Voltage dependence of adaptation and active bundle movement in bullfrog saccular hair cells.

نویسندگان

  • J A Assad
  • N Hacohen
  • D P Corey
چکیده

Hair cells of the bullfrog sacculus adapt to maintained displacement stimuli in a manner that suggests an active regulation of the tension stimulus reaching transduction channels. We have examined adaptation in dissociated hair cells by whole-cell patch-clamp recording and video microscopy. Adaptation was present in these cells, and it depended on extracellular calcium. The adaptation rate--as well as the position of the resting current-displacement curve--also depended on membrane potential, suggesting that calcium passes into the cytoplasm to reach its site of action. After abrupt hyperpolarization, the adaptation rate increased within milliseconds, suggesting that the calcium site is within a few micrometers of the ion channels through which calcium enters. The voltage dependence of the resting current-displacement curve, together with the "gating springs" hypothesis for transduction, predicts movement of the bundle away from the kinocilium when the cell is depolarized. This was observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An active motor model for adaptation by vertebrate hair cells.

Bullfrog saccular hair cells adapt to maintained displacements of their stereociliary bundles by shifting their sensitive range, suggesting an adjustment in the tension felt by the transduction channels. It has been suggested that steady-state tension is regulated by the balance of two calcium-sensitive processes: passive "slipping" and active "tensioning." Here we propose a mathematical model ...

متن کامل

Ca2+ changes the force sensitivity of the hair-cell transduction channel.

The mechanically gated transduction channels of vertebrate hair cells tend to close in approximately 1 ms after their activation by hair bundle deflection. This fast adaptation is correlated with a quick negative movement of the bundle (a "twitch"), which can exert force and may mediate an active mechanical amplification of sound stimuli in hearing organs. We used an optical trap to deflect bul...

متن کامل

The extent of adaptation in bullfrog saccular hair cells.

Positive deflection of the sensory hair bundle of a vertebrate hair cell opens transduction channels to depolarize the cell. In bullfrog saccular hair cells, there is a subsequent adaptation process, whereby the proportion of transduction channels that are open, and thus the receptor current, declines toward the resting value. This occurs because the sensitivity curve, relating open probability...

متن کامل

Synaptic activity of auditory and vestibular hair cells

·--------------------------------------------------------------------------------------------------------············xiv CHAPTER 1: The inner ear and hair cell resonant frequency Introduction: Sensory organs of the inner ear and innervation ..... ------------------------------·--------·1 Hair cell shape and innervation of the cochlea and sacculus ......................... 2 Frequency detection ...

متن کامل

Mechanoelectrical transduction and adaptation in hair cells of the mouse utricle, a low-frequency vestibular organ.

Hair cells of inner ear organs sensitive to frequencies above 10 Hz adapt to maintained hair bundle deflections at rates that reduce their responses to lower frequencies. Mammalian vestibular organs detect head movements at frequencies well below 10 Hz. We asked whether hair cells of the mouse utricle adapt, and if so, whether the adaptation was similar to that in higher frequency organs such a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 86 8  شماره 

صفحات  -

تاریخ انتشار 1989